Teaching Spatial Concepts with GIS:
Design as Method

Comments

(1) Use of applied problems (no cookbooks)
(2) Use of diagrams
(3) Solving versus setting problems
(4) Domains and choreography of concepts

Jeff Howarth
Geography Department
Middlebury College, Vermont
Design

- Ends
- Synthesis
- Means

Teaching Spatial Concepts with GIS

- Spatial Concepts
- Applied Problem
- GIS
Bob Churchill (1946-2004)

Geography Department, Middlebury College, Vermont

Courtesy Bill Hegman
The primary purposes of this exercise are to introduce ARC.PLOT, the ARC/INFO® program for constructing and querying maps and to illustrate the principles of coverage overlays. An applied problem in IDRIS® is included for experience and review.

Vector Overlays in ARC/INFO®:

The town of Middlebury wants to build a scenic walking trail, but state regulations prohibit the siting of new recreational facilities within one-half kilometer of underground petrochemical storage facilities (i.e., gasoline stations). While some soils are simply unsuited to the construction of a highly used trail, soil type also serves as a reasonable surrogate for vegetation cover and terrain. In particular, those soils that are suitable for this project include AmB, CtA, FbC, FnB, NeB, NeD, and NsC. Finally, the area required for the trail should be at least 275,000 square meters. Please use vector overlay in ARC/INFO® to find all areas in the Middlebury vicinity that meet these criteria. Then use ARC.PLOT to construct a map that shows acceptable sites as shaded polygons. The map also should include streams and petrochemical storage sites symbolized appropriately, a title, a neatline or border around the entire map composition, a scale in RF and graphic formats, and anything else you consider useful. Please generate a hardcopy of the final map on the Zeta plotter.
Purpose

Synthesis or Design

Means

Spatial Concepts

Applied Problem

GIS

Conceptual Diagrams
how they solved the problem
ArcGIS Data Management Operations

MOSAIC TO NEW RASTER

Objective: Combine several adjacent rasters into a new, larger raster

Parameters:
1. Since coordinate info is already included, user does not need to specify order of rasters in mosaic
2. Cell size of new raster
3. Mosaic method (determines method used to combine overlapping areas)

RESAMPLE

Objective: Sample data from input raster and creates output raster of new proportions by altering cell size

Parameters:
1. Cell size of output raster
2. Resampling technique (algorithm used to calculate values of new cells)

ArcGIS Neighborhood/Focal Operations

FLOW DIRECTION

Objective: Create new raster in which each cell's value corresponds to the relative location of adjacent cell with lowest elevation value. Thus, the new value for each cell expresses the direction of flow from that cell.

Parameters:
1. Whether to "force all edge cells to flow outward" (*normally not used*) or to allow them to follow normal flow rules

FLOW ACCUMULATION

Objective: Create new raster (from Flow Direction output) where each cell's value indicates accumulated flow into that cell.

Parameters:
1. Output as float or integer format
Two Perspectives of Ends

Student’s Perspective

- The Answer, The Job
- GIS, Diagrams
- Applied Problem

Instructor’s Perspective

- Spatial Concepts
- GIS, Diagrams
- Applied Problem
Donald Schöen (1983)

Instrumentalist

The Answer, The Job

Problem Solving

GIS, Diagrams

Framing the Problem

Spatial Concepts

Problem Setting

GIS, Diagrams

Given a set of constraints and means, what is the best solution?

What ends should be achieved?
What are the relevant domains?

Conceptual Domain
- Concepts
- Applied Problem

Thematic Domain
- GIS, Diagrams
- Technical Domain
 - Digital/Analog
 - Spatial: Plan/Perspective
 - Temporal: Static/Dynamic
 - Logical: Analytic/Normative

Technical Domain
- Natural Sciences
- Social Sciences
- Humanities
- Art/Architecture

Natural Sciences

Social Sciences

Humanities

Art/Architecture...
What are effective choreographies?

Object vs. Field → ? → ?

Model Flood Zones → ? → ?

Reclassify a DEM → ? → ?

Based on genealogy (child-parent relations) of concepts